19 research outputs found

    Effects of Parkinson’s disease on optic flow perception for heading direction during navigation

    Full text link
    Visuoperceptual disorders have been identified in individuals with Parkinson’s disease (PD) and may affect the perception of optic flow for heading direction during navigation. Studies in healthy subjects have confirmed that heading direction can be determined by equalizing the optic flow speed (OS) between visual fields. The present study investigated the effects of PD on the use of optic flow for heading direction, walking parameters, and interlimb coordination during navigation, examining the contributions of OS and spatial frequency (dot density). Twelve individuals with PD without dementia, 18 age-matched normal control adults (NC), and 23 young control adults (YC) walked through a virtual hallway at about 0.8 m/s. The hallway was created by random dots on side walls. Three levels of OS (0.8, 1.2, and 1.8 m/s) and dot density (1, 2, and 3 dots/m2) were presented on one wall while on the other wall, OS and dot density were fixed at 0.8 m/s and 3 dots/m2, respectively. Three-dimensional kinematic data were collected, and lateral drift, walking speed, stride frequency and length, and frequency, and phase relations between arms and legs were calculated. A significant linear effect was observed on lateral drift to the wall with lower OS for YC and NC, but not for PD. Compared to YC and NC, PD veered more to the left under OS and dot density conditions. The results suggest that healthy adults perceive optic flow for heading direction. Heading direction in PD may be more affected by the asymmetry of dopamine levels between the hemispheres and by motor lateralization as indexed by handedness.Published versio

    A dynamical approach to gestural patterning in speech production.

    Get PDF
    In this article, we attempt to reconcile the linguistic hypothesis that speech involves an underlying sequencing of abstract, discrete, context-independent units, with the empirical observation of continuous, context-dependent interleaving of articulatory movements. To this end, we first review a previously proposed task-dynamic model for the coordination and control of the speech articulators. We then describe an extension of this model in which invariant speech units (gestural primitives) are identified with context-independent sets of parameters in a dynamical system having two functionally distinct but interacting levels. The intergesturallevel is defined according to a set of activation coordinates; the interarticulator level is defined according to both model articulator and tract-variable coordinates. In the framework of this extended model, coproduction effects in speech are described in terms of the blending dynamics defined among a set of temporally overlapping active units; the relative timing of speech gestures is formulated in terms of the serial dynamics that shape the temporal patterning of onsets and offsets in unit activations. Implications of this approach for certain phonological issues are discussed, and a range of relevant experimental data on speech and limb motor control is reviewed

    Quantitative imaging of concentrated suspensions under flow

    Full text link
    We review recent advances in imaging the flow of concentrated suspensions, focussing on the use of confocal microscopy to obtain time-resolved information on the single-particle level in these systems. After motivating the need for quantitative (confocal) imaging in suspension rheology, we briefly describe the particles, sample environments, microscopy tools and analysis algorithms needed to perform this kind of experiments. The second part of the review focusses on microscopic aspects of the flow of concentrated model hard-sphere-like suspensions, and the relation to non-linear rheological phenomena such as yielding, shear localization, wall slip and shear-induced ordering. Both Brownian and non-Brownian systems will be described. We show how quantitative imaging can improve our understanding of the connection between microscopic dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of methodology. Submitted for special volume 'High Solid Dispersions' ed. M. Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009); 22 pages, 16 fig

    Musculoskeletal stiffness changes linearly in response to increasing load during walking gait

    No full text
    Development of biologically inspired exoskeletons to assist soldiers in carrying load is a rapidly expanding field. Understanding how the body modulates stiffness in response to changing loads may inform the development of these exoskeletons and is the purpose of the present study. Seventeen subjects walked on a treadmill at a constant preferred walking velocity while nine different backpack loading conditions ranging from 12.5% to 40% bodyweight (BW) were introduced in an ascending and then descending order. Kinematic data were collected using Optotrak, a 3D motion analysis system, and used to estimate the position of the center of mass (COM). Two different estimates of stiffness were computed for the stance phase of gait. Both measures of stiffness were positively and linearly related to load magnitudes, with the slopes of the relationships being larger for the descending than the ascending conditions. These results indicate that changes in mechanical stiffness brought about in the musculoskeletal system vary systematically during increases in load to ensure that critical kinematic variables measured in a previous publication remain invariant (. Caron et al., 2013). Changes in stiffness and other kinematics measured at the 40% BW condition suggest a boundary in which gait stiffness control limit is reached and a new gait pattern is required. Since soldiers are now carrying up to 96% of body weight, the need for research with even heavier loads is warranted. These findings have implications on the development of exoskeletons to assist in carrying loads

    Multifractal fluctuations in joint angles during infant spontaneous kicking reveal multiplicativity-driven coordination

    No full text
    Previous research has considered infant spontaneous kicking as a form of exploration. According to this view, spontaneous kicking provides information about motor degrees of freedom and may shape multijoint coordinations for more complex movement patterns such as gait. Recent work has demonstrated that multifractal, multiplicative fluctuations in exploratory movements index energy flows underlying perceptual-motor information. If infant spontaneous kicking is exploratory and occasions an upstream flow of information from the motor periphery, we expected not only that multiplicativity of fluctuations at the hip should promote multiplicativity of fluctuations at more distal joints (i.e., reflecting downstream effects of neural control) but also that multiplicativity at more distal joints should promote multiplicativity at the hip. Multifractal analysis demonstrated that infant spontaneous kicking in four typically developing infants for evidence of multiplicative fluctuations in multiple joint angles along the leg (i.e., hip, knee, and ankle) exhibited multiplicativity. Vector autoregressive modeling demonstrated that only one leg exhibited downstream effects but that both legs exhibited upstream effects. These results confirm the exploratory aspect of infant spontaneous kicking and suggest chaotic dynamics in motor coordination. They also resonate with existing models of chaos-controlled robotics and noise-based interventions for rehabilitating motor coordination in atypically developing patients.National Institutes of Health (U.S.) (Grant P30HD18655)Wyss Institute for Biologically Inspired EngineeringNational Science Foundation (U.S.). Division of Computer and Network Systems (0932015

    Results from the International Halocarbons in Air Comparison Experiment : (IHALACE) [Discussion paper]

    Get PDF
    The International Halocarbons in Air Comparison Experiment (IHALACE) was conducted to document relationships between calibration scales among various laboratories that measure atmospheric greenhouse and ozone depleting gases. Six stainless steel cylinders containing natural and modified natural air samples were circulated among 19 laboratories. Results from this experiment reveal relatively good agreement among commonly used calibration scales for a number of trace gases present in the unpolluted atmosphere at pmol mol−1 (parts per trillion) levels, such as chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs). Some scale relationships were found to be consistent with those derived from bi-lateral experiments or from analysis of atmospheric data, while others revealed discrepancies. The transfer of calibration scales among laboratories was found to be problematic in many cases, meaning that measurements tied to a common scale may not, in fact, be compatible. These results reveal substantial improvements in calibration over previous comparisons. However there is room for improvement in communication and coordination of calibration activities with respect to the measurement of halogenated and related trace gases
    corecore